Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.491
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1355133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558793

RESUMO

Harnessing solar energy is one of the most important practical insights highlighted to mitigate the severe climate change (CC) phenomenon. Therefore, this study aims to focus on the use of hybrid solar dryers (HSDs) within an environmentally friendly framework, which is one of the promising applications of solar thermal technology to replace traditional thermal technology that contributes to increasing the severity of the CC phenomenon. The HSD, based on a traditional electrical energy source (HSTEE) and electrical energy from photovoltaic panels (HSPVSE), was evaluated compared to a traditional electrical (TE) dryer for drying some medicinal and aromatic plants (MAPs). This is done by evaluating some of the drying outputs, energy consumed, carbon footprint, and financial return at 30, 40, and 50°C. The best quality of dried MAP samples in terms of essential oil (EO, %) and microbial load was achieved at 40°C. The HSTEE dryer has reduced energy consumption compared to the TE dryer by a percentage ranging from 37% to 54%. The highest CO2 mitigated ratio using the HSTEE dryer was recorded in thyme, marjoram, and lemongrass samples, with values ranging from 45% to 54% at 30, 40, and 50°C. The highest financial return obtained from energy consumption reduction and carbon credit footprint was achieved at 50°C, with values ranging from 5,313.69 to 6,763.03 EGP/year (EGP ≈ 0.0352 USD) when coal was used as a fuel source for the generation of electricity. Moreover, the HSPVSE dryer achieved a 100% reduction in traditional energy consumption and then reduced CO2 emissions by 100%, which led to a 100% financial return from both energy reduction and carbon credit. The highest financial returns were observed at 50°C, with values ranging from 13,872.56 to 15,007.02, 12,927.28 to 13,984.43, and 11,981.99 to 12,961.85 EGP/year (EGP ≈ 0.0352 USD) for coal, oil, and natural gas, respectively. The HS dryers show potential for environmental conservation contribution; furthermore, earning money from energy savings and carbon credit could help improve the living standards and maximize benefits for stakeholders.

2.
Front Surg ; 11: 1300625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562585

RESUMO

Introduction: Surgical site infections (SSI) are the most common healthcare-associated infections; however, access to healthcare services, lack of patient awareness of signs, and inadequate wound surveillance can limit timely diagnosis. Telemedicine as a method for remote postoperative follow-up has been shown to improve healthcare efficiency without compromising clinical outcomes. Furthermore, telemedicine would reduce the carbon footprint of the National Health Service (NHS) through minimising patient travel, a significant contributor of carbon dioxide equivalent (CO2e) emissions. Adopting innovative approaches, such as telemedicine, could aid in the NHS Net-Zero target by 2045. This study aimed to provide a comprehensive analysis of the feasibility and sustainability of telemedicine postoperative follow-up for remote diagnosis of SSI. Methods: Patients who underwent a lower limb vascular procedure were reviewed remotely at 30 days following the surgery, with a combined outcome measure (photographs and Bluebelle Wound Healing Questionnaire). A hybrid life-cycle assessment approach to carbon footprint analysis was used. The kilograms of carbon dioxide equivalent (kgCO2e) associated with remote methods were mapped prospectively. A simple outpatient clinic review, i.e., no further investigations or management required, was modelled for comparison. The Department of Environment, Food, and Rural Affairs (DEFRA) conversion factors plus healthcare specific sources were used to ascertain kgCO2e. Patient postcodes were applied to conversion factors based upon mode of travel to calculate kgCO2e for patient travel. Total and median (interquartile range) carbon emissions saved were presented for both patients with and without SSI. Results: Altogether 31 patients (M:F 2.4, ±11.7 years) were included. The median return distance for patient travel was 42.5 (7.2-58.7) km. Median reduction in emissions using remote follow-up was 41.2 (24.5-80.3) kgCO2e per patient (P < 0.001). The carbon offsetting value of remote follow-up is planting one tree for every 6.9 patients. Total carbon footprint of face-to-face follow-up was 2,895.3 kgCO2e, compared with 1,301.3 kgCO2e when using a remote-first approach (P < 0.001). Carbon emissions due to participants without SSI were 700.2 kgCO2e by the clinical method and 28.8 kgCO2e from the remote follow-up. Discussion: This model shows that the hybrid life-cycle assessment approach is achievable and reproducible. Implementation of an asynchronous digital follow-up model is effective in substantially reducing the carbon footprint of a tertiary vascular surgical centre. Further work is needed to corroborate these findings on a larger scale, quantify the impact of telemedicine on patient's quality of life, and incorporate kgCO2e into the cost analysis of potential SSI monitoring strategies.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38561534

RESUMO

Analyzing the inequality characteristics and influencing factors of CO2 emissions per capita (CEPC) is conducive to balancing regional development and CO2 emissions reduction. This study applied the Gini coefficient and Theil index to investigate the CEPC inequalities during 2005-2017 at the county level in Jiangsu Province, China. Considering the spatial spillover and interaction effects, the factors influencing CEPC were analyzed by a hierarchical spatial autoregressive model. The results showed that the inequalities in CEPC first increased and then decreased at the inter-regional, and inter-county levels. The spatial pattern of CEPC was stable, and there was a significantly positive spatial autocorrelation of CEPC at the county level. The High-High type counties were mainly located in Sunan (southern Jiangsu). The spatial interaction effects of the CEPC between the prefecture and county levels indicated that governments at the prefecture level should integrate their county governments to reduce the CEPC. Moreover, carbon intensity, GDP per capita, land urbanization, and industrial structure play an important role in reducing CEPC. Our findings provide a scientific basis for formulating reasonable and effective carbon emission reduction policies.

4.
Int J Behav Nutr Phys Act ; 21(1): 36, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566176

RESUMO

BACKGROUND: The Planetary Health Diet Index (PHDI) measures adherence to the dietary pattern presented by the EAT-Lancet Commission, which aligns health and sustainability targets. There is a need to understand how PHDI scores correlate with dietary greenhouse gas emissions (GHGE) and how this differs from the carbon footprints of scores on established dietary recommendations. The objectives of this study were to compare how the PHDI, Healthy Eating Index-2015 (HEI-2015) and Dietary Approaches to Stop Hypertension (DASH) relate to (a) dietary GHGE and (b) to examine the influence of PHDI food components on dietary GHGE. METHODS: We used life cycle assessment data from the Database of Food Recall Impacts on the Environment for Nutrition and Dietary Studies to calculate the mean dietary GHGE of 8,128 adult participants in the 2015-2016 and 2017-2018 cycles of the National Health and Nutrition Examination Survey (NHANES). Poisson regression was used to estimate the association of (a) quintiles of diet score and (b) standardized dietary index Z-scores with dietary GHGE for PHDI, HEI-2015, and DASH scores. In secondary analyses, we used Poisson regression to assess the influence of individual PHDI component scores on dietary GHGE. RESULTS: We found that higher dietary quality on all three indices was correlated with lower dietary GHGE. The magnitude of the dietary quality-dietary GHGE relationship was larger for PHDI [-0.4, 95% CI (-0.5, -0.3) kg CO2 equivalents per one standard deviation change] and for DASH [-0.5, (-0.4, -0.6) kg CO2-equivalents] than for HEI-2015 [-0.2, (-0.2, -0.3) kg CO2-equivalents]. When examining PHDI component scores, we found that diet-related GHGE were driven largely by red and processed meat intake. CONCLUSIONS: Improved dietary quality has the potential to lower the emissions impacts of US diets. Future efforts to promote healthy, sustainable diets could apply the recommendations of the established DASH guidelines as well as the new guidance provided by the PHDI to increase their environmental benefits.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Gases de Efeito Estufa , Adulto , Humanos , Dieta Saudável , Gases de Efeito Estufa/análise , Inquéritos Nutricionais , Dióxido de Carbono/análise , Dieta
6.
Heliyon ; 10(7): e28253, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571637

RESUMO

Mercury's neurotoxic effects have prompted the development of advanced control and remediation methods to meet stringent measures for industries with high-mercury feedstocks. Industries with significant Hg emissions, including artisanal and small-scale gold mining (ASGM)-789.2 Mg year-1, coal combustion-564.1 Mg year-1, waste combustion-316.1 Mg year-1, cement production-224.5 Mg year-1, and non-ferrous metals smelting-204.1 Mg year-1, use oxidants and adsorbents capture Hg from waste streams. Oxidizing agents such as O3, Cl2, HCl, CaBr2, CaCl2, and NH4Cl oxidize Hg0 to Hg2+ for easier adsorption. To functionalize adsorbents, carbonaceous ones use S, SO2, and Na2S, metal-based adsorbents use dimercaprol, and polymer-based adsorbents are grafted with acrylonitrile and hydroxylamine hydrochloride. Adsorption capacities span 0.2-85.6 mg g-1 for carbonaceous, 0.5-14.8 mg g-1 for metal-based, and 168.1-1216 mg g-1 for polymer-based adsorbents. Assessing Hg contamination in soils and sediments uses bioindicators and stable isotopes. Remediation approaches include heat treatment, chemical stabilization and immobilization, and phytoremediation techniques when contamination exceeds thresholds. Achieving a substantially Hg-free ecosystem remains a formidable challenge, chiefly due to the ASGM industry, policy gaps, and Hg persistence. Nevertheless, improvements in adsorbent technologies hold potential.

7.
Heliyon ; 10(7): e28197, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571628

RESUMO

The study considered the impacts of asset intensity and other energy-associated CO2 emissions drivers in the Nigerian manufacturing sector from 2010 to 2020. The Logarithmic Mean Divisia Index (LMDI) was used to explore the driving factors of CO2 emissions: asset intensity, economic output, economic structure, energy intensity, energy mix, and carbon emission coefficient. From the results, the CO2 emissions decreased from 7.49 MtCO2 in 2010 to 3.22 MtCO2 in 2020. Furthermore, among the emissions drivers, the energy mix effect increased CO2 emissions by 0.50 MtCO2, followed by asset intensity (0.29 MtCO2) and economic structure (0.11 MtCO2). The energy intensity, economic output, and emission coefficient effects inhibited CO2 emissions by -4.64 MtCO2, -0.42 MtCO2, and -0.01 MtCO2 respectively. The contribution of the subsectors' emissions shows that the Other Manufacturing subsector emitted 14.62 MtCO2, while Chemical and Pharmaceutical emitted 14.61 MtCO2, Food, Beverages and Tobacco, 7.55 MtCO2, Textile, Apparel, and Footwear, 6.63 MtCO2, Basic Metal and Iron and Steel, 5.15 MtCO2, Plastic and Rubber Products, 2.99 MtCO2, Agro-Allied, 2.71 MtCO2, Oil Refining, 2.01 MtCO2, and Pulp and Paper Products, 1.76 MtCO2. The results indicated that the effect of asset intensity on emission growth is significant and should not be overlooked. Likewise, the effects of CO2 emission drivers were found to impact differently across the subsectors. The latter suggests that firm-specific indicators in the respective subsectors should be one of the primacies during policy development since the driving factors of CO2 emissions fluctuate across the subsectors.

8.
ChemSusChem ; : e202400280, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576083

RESUMO

The enforcement of a global hydrofluorocarbon (HFC) refrigerant phase down led to the introduction of hydrofluoroolefins (HFOs) as a low Global Warming Potential (GWP) substitute, given their low atmospheric lifetime. However, to this date it is not fully clear the long-term atmospheric fate of HFOs primary degradation products: trifluoro acetaldehyde (TFE), trifluoro acetyl fluoride (TFF), and trifluoroacetic acid (TFA). It particularly concerns the possibility of forming HFC-23, a potent global warming agent. Although the atmospheric reaction networks of TFE, TFF, and TFA have a fair level of complexity, the relevant atmospheric chemical pathways are well characterized in the literature, enabling a comprehensive hazard assessment of HFC-23 formation as a secondary HFO breakdown product in diverse scenarios. A lower bound of the HFOs effective GWP in a baseline scenario is found above regulatory thresholds. While further research is crucial to refine climate risk assessments, the existing evidence suggests a non-negligible climate hazard associated with HFOs.

9.
Environ Sci Technol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578665

RESUMO

Carbon neutral or negative mining can potentially be achieved by integrating carbon mineralization processes into the mine design, operations, and closure plans. Brucite [Mg(OH)2] is a highly reactive mineral present in some ultramafic mine tailings with the potential to be rapidly carbonated and can contain significant amounts of ferrous iron [Fe(II)] substituted for Mg; however, the influence of this substitution on carbon mineralization reaction products and efficiency has not been thoroughly constrained. To better assess the efficiency of carbon storage in brucite-bearing tailings, we performed carbonation experiments using synthetic Fe(II)-substituted brucite (0, 6, 23, and 44 mol % Fe) slurries in oxic and anoxic conditions with 10% CO2. Additionally, the carbonation process was evaluated using different background electrolytes (NaCl, Na2SO4, and Na4SiO4). Our results indicate that carbonation efficiency decreases with increasing Fe(II) substitution. In oxic conditions, precipitation of ferrihydrite [Fe10IIIO14(OH)2] and layered double hydroxides {e.g., pyroaurite [Mg6Fe2III(OH)16CO3·4H2O]} limited carbonation efficiency. Carbonation in anoxic environments led to the formation of Fe(II)-substituted nesquehonite (MgCO3·3H2O) and dypingite [Mg5(CO3)4(OH)2·âˆ¼5H2O], as well as chukanovite [Fe2IICO3(OH)2] in the case of 23 and 44 mol % Fe(II)-brucite carbonation. Carbonation efficiencies were consistent between chloride- and sulfate-rich solutions but declined in the presence of dissolved Si due to the formation of amorphous SiO2·nH2O and Fe-Mg silicates. Overall, our results indicate that carbonation efficiency and the long-term fate of stored CO2 may depend on the amount of substituted Fe(II) in both feedstock minerals and carbonate products.

10.
J Environ Manage ; 358: 120758, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593735

RESUMO

European legislation stated that electric vehicles' sale must increase to 35% of circulating vehicles by 2030, and concern is associated to the batteries' supply chain. This review aims at analysing the impacts (about material flows and CO2 eq emissions) of Lithium-Ion Batteries' (LIBs) recycling at full-scale in Europe in 2030 on the European LIBs' supply-chain. Literature review provided the recycling technologies' (e.g., pyro- and hydrometallurgy) efficiencies, and an inventory of existing LIBs' production and recycling plants in Europe. European production plants exhibit production capacity adequate for the expected 2030 needs. The key critical issues associated to recycling regard pre-treatments and the high costs and environmental impacts of metallurgical processes. Then, according to different LIBs' composition and market shares in 2020, and assuming a 10-year battery lifetime, the Material Flow Analysis (MFA) of the metals embodied in End of Life (EoL) LIBs forecasted in Europe in 2030 was modelled, and the related CO2 eq emissions calculated. In 2030 the European LIBs' recycling structure is expected to receive 664 t of Al, 530 t of Co, 1308 t of Cu, 219 t of Fe, 175 t of Li, 287 t of Mn and 486 t of Ni. Of these, 99% Al, 86% Co, 96% Cu, 88% Mn and 98% Ni will be potentially recovered by pyrometallurgy, and 71% Al, 92% Co, 92% Fe, 96% Li, 88 % Mn and 90% Ni by hydrometallurgy. However, even if the recycling efficiencies of the technologies applied at full-scale are high, the treatment capacity of European recycling plants could supply as recycled metals only 2%-wt of the materials required for European LIBs' production in 2030 (specifically 278 t of Al, 468 t of Co, 531 t of Cu, 114 t of Fe, 95 t of Li, 250 t of Mn and 428 t of Ni). Nevertheless, including recycled metals in the production of new LIBs could cut up 28% of CO2 eq emissions, compared to the use of virgin raw materials, and support the European batteries' value chain.

11.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591413

RESUMO

Composting is a process that emits environmentally harmful gases: CO2, CO, H2S, and NH3, negatively affecting the quality of mature compost. The addition of biochar to the compost can significantly reduce emissions. For effective CO2 removal, high doses of biochar (up to 20%) are often recommended. Nevertheless, as the production efficiency of biochar is low-up to 90% mass loss-there is a need for research into the effectiveness of lower doses. In this study, laboratory experiments were conducted to observe the gaseous emissions during the first 10 days of composting with biochars obtained from mature composts. Biochars were produced at 550, 600, and 650 °C, and tested with different doses of 0, 3, 6, 9, 12, and 15% per dry matter (d.m.) in composting mixtures, at three incubation temperatures (50, 60, and 70 °C). CO2, CO, H2S, and NH3 emissions were measured daily. The results showed that the biochars effectively mitigate CO2 emissions during the intensive phase of composting. Even 3-6% d.m. of compost biochars can reduce up to 50% of the total measured gas emissions (the best treatment was B650 at 60 °C) and significantly increase the content of macronutrients. This study confirmed that even low doses of compost biochars have the potential for enhancing the composting process and improving the quality of the material quality.

12.
Environ Res ; 252(Pt 1): 118844, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38579998

RESUMO

Urban greening can improve cities' air quality by filtering the main gaseous pollutants such as tropospheric ozone (O3). However, the pollutant removal capacity offered by woody species strongly depends on eco-physiological and morphological traits. Woody species with higher stomatal conductance (gs) can remove more gases from the atmosphere, but other species can worsen air quality due to high O3 forming potential (OFP), based on their emitting rates of biogenic volatile organic compounds (bVOCs) and Leaf Mass per Area (LMA). Presently, there is a lack of data on eco-physiological (gs, bVOCs emissions) and foliar traits (LMA) for several ornamental species used in urban greening programs, which does not allow assessment of their O3 removal capacity and OFP. This study aimed to (i) parameterize gs, assess bVOCs emissions and LMA of 14 ornamental woody species commonly used in Mediterranean urban greening, and (ii) model their Net O3 uptake. The gs Jarvis model was parameterized considering various environmental conditions alongside isoprene and monoterpene foliar bVOCs emission rates trapped in the field and quantified by gas chromatography-mass spectrometry. The results are helpful for urban planning and landscaping; suggesting that Catalpa bignonioides and Gleditsia triacanthos have excellent O3 removal capacity due to their high maximum gs (gmax) equal to 0.657 and 0.597 mol H2O m-2 s-1. Regarding bVOCs, high isoprene (16.75 µg gdw-1 h-1) and monoterpene (13.12 µg gdw-1 h-1) emission rates were found for Rhamnus alaternus and Cornus mas. In contrast, no bVOCs emissions were detected for Camellia sasanqua and Paulownia tomentosa. In conclusion, 11 species showed a positive Net O3 uptake, while the use of large numbers of R. alaternus, C. mas, and Chamaerops humilis for urban afforestation planning are not recommended due to their potential to induce a deterioration of outdoor air quality.

13.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569319

RESUMO

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Assuntos
Fabaceae , Gases de Efeito Estufa , Verduras/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitratos , Carbono , Solo , Metano/análise , Nitrogênio/metabolismo , Dióxido de Carbono/análise , Agricultura
14.
Artigo em Inglês | MEDLINE | ID: mdl-38644424

RESUMO

Although hybrid wind-biomass-battery-solar energy systems have enormous potential to power future cities sustainably, there are still difficulties involved in their optimal planning and designing that prevent their widespread adoption. This article aims to develop an optimal sizing of microgrids by incorporating renewable energy (RE) technologies for improving cost efficiency and sustainability in urban areas. Diverse RE technologies such as photovoltaic (PV) systems, biomass, batteries, wind turbines, and converters are considered for system configuration to obtain this goal. Net present cost (NPC) is this study's objective function for optimal sizing microgrid configuration. For demonstration, we assess the technical, economic factors, and atmospheric emissions of optimal hybrid renewable energy systems for Putrajaya City in Malaysia. The required solar radiation data, temperature, and wind speeds are collected from the NASA surface metrological database. From the quantitative analysis of simulations, the biomass-battery-based system has optimal economic outcomes compared to other systems with an NPC of around 1.07 M$, while the cost of energy (COE) is 0.118 $/kWh. Moreover, environmentally safe nitrogen oxide emissions, carbon monoxide, and carbon dioxide concentrations exist. The grid-tied RE technology boasts cost-effectiveness, with an NPC of 348,318 $ and a COE of 0.0112 $/kWh. This study aids decision-makers in formulating policies for integrating hybrid RE systems in urban areas, promoting sustainable energy generation.

15.
Data Brief ; 54: 110390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646189

RESUMO

This study presents performance and emissions data of an Otto cycle mono-cylinder combustion engine operating with two different compression rates and several mixtures of anhydrous ethanol fuel and water. The instrumented engine was mounted on a dynamometer with the ignition point and injection fuel advance calibrated to obtain the maximum torque and mixture in stoichiometric conditions. Characteristic engine performance parameters and emission fractions from its exhaust system were acquired from 2,000 rpm to 4,000 rpm with fuel mixtures of up to 50% water content. To our knowledge, data on this extreme operating condition are not available in the literature.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38627344

RESUMO

This study investigates whether technological innovation and the consumption of renewable energy tend to reduce the emissions of CO2 in the USA by analyzing datasets from January 2010 to May 2022. The main contribution to this study is that we applied a cross-quantile approach, which possesses several strengths compared to other methods used for directional predictability. The empirical results of this research can be concluded as three points: (1) both the consumption of renewable energy and technological innovation significantly and negatively impacted the emissions of CO2 in the short run (i.e., 1 month) across high quantiles, which gradually diminished over time (i.e., 3 months, 12 months, and 24 months), implying that technological innovation and the consumption of renewable energy possess a short-lived effect on CO2 emissions, respectively; (2) this relationship remains significant for causal links spanning 1 and 3 months and 1 and 2 years when the consumption of renewable energy and technological innovation are treated as control variables respectively; (3) a recursive cross-quantilogram was constructed to support further our findings, which showed that the consumption of renewable energy and technological innovation tend to negatively impact the emissions of CO2 across all quantiles. These results imply that an increase in the consumption of renewable energy and technological innovation can curb CO2 emissions in the USA; these effects tend to be more lasting when technological innovation and the consumption of renewable energy are combined. Therefore, future policies focused on curbing the emissions of CO2 should pay attention to the combined effect, which is the promotion of technological innovation and the exploitation of renewable energy sources in the USA.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38630395

RESUMO

Sub-Saharan Africa (SSA) is seeing exceptional urbanization and economic expansion rates. Therefore, the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) parameters and the spatial econometric framework are used in this work to examine the influence of economic growth and urbanization on SSA's CO2 emissions. Likewise, to determine the spatial effect and understand how factors influence the spatial dependence of carbon emissions, the study builds a spatial Durbin model (SDM). In line with the findings, the spatial correlation test revealed the spatial correlations across various countries. This indicates that the changes in sub-Saharan African country's CO2 emissions impacted nearby countries and the countries themselves. Additionally, the findings reveal that, in the SSA's countries, urbanization, economic growth, industrial structure, trade, and population, excluding energy intensity, which failed the significant test, all positively influence CO2 outflows, in line with the spatial econometric model's findings. Thus, energy intensity shares an adverse impact on carbon emissions. As an outcome, energy intensity reduces carbon dioxide emissions in nearby nations and the entire region. Thus, the study recommends that policymakers account for the effects of spatial spillover when establishing low-carbon policies, encouraging a low-carbon lifestyle, promoting environmentally friendly technologies, and improving regional collaboration.

18.
J Environ Manage ; 357: 120730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574705

RESUMO

Volatile organic compounds (VOCs) significantly contribute to ozone pollution formation, and many VOCs are known to be harmful to human health. Plastic has become an indispensable material in various industries and daily use scenarios, yet the VOC emissions and associated health risks in the plastic manufacturing industry have received limited attention. In this study, we conducted sampling in three typical plastic manufacturing factories to analyze the emission characteristics of VOCs, ozone formation potential (OFP), and health risks for workers. Isopropanol was detected at relatively high concentrations in all three factories, with concentrations in organized emissions reaching 322.3 µg/m3, 344.8 µg/m3, and 22.6 µg/m3, respectively. Alkanes are the most emitted category of VOCs in plastic factories. However, alkenes and oxygenated volatile organic compounds (OVOCs) exhibit higher OFP. In organized emissions of different types of VOCs in the three factories, alkenes and OVOCs contributed 22.8%, 67%, and 37.8% to the OFP, respectively, highlighting the necessity of controlling them. The hazard index (HI) for all three factories was less than 1, indicating a low non-carcinogenic toxic risk; however, there is still a possibility of non-cancerous health risks in two of the factories, and a potential lifetime cancer risk in all of the three factories. For workers with job tenures exceeding 5 years, there may be potential health risks, hence wearing masks with protective capabilities is necessary. This study provides evidence for reducing VOC emissions and improving management measures to ensure the health protection of workers in the plastic manufacturing industry.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Medição de Risco , Indústria Manufatureira , Alcenos , China
19.
J Environ Manage ; 357: 120764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574709

RESUMO

Cities are one of the main sources of regional carbon emissions, and reducing urban carbon emission is the key to reducing emissions. The digital economy has transformed the economic operation mode, and it is a significant approach to support the "dual carbon goals" (carbon peaking and carbon neutrality). This article considers the externalities of the digital economy and carbon emissions. And we use spatial econometric models to analyze the effectiveness of digital economy in empowering carbon emissions reduction. Besides, we explore the static and dynamic spillover effects, and use spatial Durbin panel quantile model to analyze the digital economy's heterogeneity on carbon emissions. Research has shown that the digital economy has a remarkable carbon reduction effect, and the conclusion remains valid after considering robustness tests such as replacing the weight matrices, calculation methods, and proxy variables. The analysis of static and dynamic spillover effects indicates that the degree of the digital economy's impact on carbon emissions are significantly different. Heterogeneity analysis shows that as the digital economy develops from a low level to a high level, its impact on carbon emissions also shifts from positive promotion to negative suppression. This paper proposes a policy reference to help the development of digital economy and promote carbon neutrality in the face of severe environmental challenges.


Assuntos
Carbono , Desenvolvimento Econômico , Cidades , Modelos Econométricos , Políticas , China
20.
Sci Total Environ ; 926: 172133, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569960

RESUMO

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Assuntos
Gases de Efeito Estufa , Oryza , Gases de Efeito Estufa/análise , Oryza/metabolismo , Agricultura/métodos , Aquecimento Global , Produção Agrícola , Óxido Nitroso/análise , Metano/análise , Solo , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...